Conductance of a Long Rectangular Channel —Pressure Dependence—

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure Drop Measurements in Rectangular Micro - Channel Using Gas Flow

Due to the need for practical cooling technologies which could dissipate high heat fluxes, an experimental study of pressure drop in micro-channel was performed. In this work, laminar flow friction factors were determined using gas (air) as flow medium. Pressure drop vs flow rate data were used to evaluate friction factors in two parallel microchannels, namely MCP1 and MCP2 (1.0 mm deep x 0.240...

متن کامل

Pressure Dependence of Liquid Vapor Pressure: An Improved Gibbs Prediction

A new model for the vapor phase of a pressurized liquid called "the cluster model: which is originally introduced in this work, along with an accurate equation of state for the liquid phase called the LIR, is used to derive an accurate equation for the vapor pressure of liquid as a function of external pressure. The chemical Potential of both phase have been found to be in good agreement wi...

متن کامل

Experimental and Computational Investigation of Flow Development and Pressure Drop in a Rectangular Micro-channel

Flow development and pressure drop were investigated both experimentally and computationally for adiabatic single-phase water flow in a single 222 m wide, 694 m deep, and 12 cm long rectangular micro-channel at Reynolds numbers ranging from 196 to 2215. The velocity field was measured using a micro-particle image velocimetry system. A three-dimensional computational model was constructed which ...

متن کامل

Investigation of Laminar Pulsating Nanofluid Flow and Heat Transfer in a Rectangular Channel

In this study, two-dimensional pulsating unsteady flow of nanofluid through a rectangular channel with isothermal walls is investigated numerically. The set of resultant algebraic equations is solved simultaneously using SIMPLE algorithm to obtain the velocity and pressure distribution within the channel. The effects of several parameters, such as volume fraction of different nanoparticles, Rey...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Vacuum Society of Japan

سال: 2017

ISSN: 1882-2398,1882-4749

DOI: 10.3131/jvsj2.60.475